Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(4): 834-841.e5, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35016008

RESUMO

Hippocampal place cells fire at specific locations in the environment. They form a cognitive map that encodes spatial relations in the environment, including reward locations.1 As part of this encoding, dorsal CA1 (dCA1) place cells accumulate at reward.2-5 The encoding of learned reward location could vary between the dorsal and intermediate hippocampus, which differ in gene expression and cortical and subcortical connectivity.6 While the dorsal hippocampus is critical for spatial navigation, the involvement of intermediate CA1 (iCA1) in spatial navigation might depend on task complexity7 and learning phase.8-10 The intermediate-to-ventral hippocampus regulates reward-seeking,11-15 but little is known about the involvement in reward-directed navigation. Here, we compared the encoding of learned reward locations in dCA1 and iCA1 during spatial navigation. We used calcium imaging with a head-mounted microscope to track the activity of CA1 cells over multiple days during which mice learned different reward locations. In dCA1, the fraction of active place cells increased in anticipation of reward, but the pool of active cells changed with the reward location. In iCA1, the same cells anticipated multiple reward locations. Our results support a model in which the dCA1 cognitive map incorporates a changing population of cells that encodes reward proximity through increased population activity, while iCA1 provides a reward-predictive code through a dedicated subpopulation. Both of these location-invariant codes persisted over time, and together they provide a dual hippocampal reward location code, assisting goal-directed navigation.16,17.


Assuntos
Células de Lugar , Navegação Espacial , Animais , Autoantígenos , Região CA1 Hipocampal/fisiologia , Hipocampo/fisiologia , Camundongos , Células de Lugar/fisiologia , Recompensa , Navegação Espacial/fisiologia
2.
Neuron ; 109(17): 2682-2690.e5, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314698

RESUMO

Slow-wave sleep is characterized by near-synchronous alternation of active Up states and quiescent Down states in the neocortex. Although the cortex itself can maintain these oscillations, the full expression of Up-Down states requires intact thalamocortical circuits. Sensory thalamic input can drive the cortex into an Up state. Here we show that midline thalamic neurons terminate Up states synchronously across cortical areas. Combining local field potential, single-unit, and patch-clamp recordings in conjunction with optogenetic stimulation and silencing in mice in vivo, we report that thalamic input mediates Down transition via activation of layer 1 neurogliaform inhibitory neurons acting on GABAB receptors. These results strengthen the evidence that thalamocortical interactions are essential for the full expression of slow-wave sleep, show that Down transition is an active process mediated by cortical GABAB receptors, and demonstrate that thalamus synchronizes Down transitions across cortical areas during natural slow-wave sleep.


Assuntos
Interneurônios/fisiologia , Neocórtex/fisiologia , Receptores de GABA-B/metabolismo , Sono de Ondas Lentas/fisiologia , Tálamo/fisiologia , Animais , Potenciais Evocados , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/metabolismo , Tálamo/citologia , Tálamo/metabolismo
3.
PLoS Comput Biol ; 17(6): e1009017, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111110

RESUMO

To survive, animals have to quickly modify their behaviour when the reward changes. The internal representations responsible for this are updated through synaptic weight changes, mediated by certain neuromodulators conveying feedback from the environment. In previous experiments, we discovered a form of hippocampal Spike-Timing-Dependent-Plasticity (STDP) that is sequentially modulated by acetylcholine and dopamine. Acetylcholine facilitates synaptic depression, while dopamine retroactively converts the depression into potentiation. When these experimental findings were implemented as a learning rule in a computational model, our simulations showed that cholinergic-facilitated depression is important for reversal learning. In the present study, we tested the model's prediction by optogenetically inactivating cholinergic neurons in mice during a hippocampus-dependent spatial learning task with changing rewards. We found that reversal learning, but not initial place learning, was impaired, verifying our computational prediction that acetylcholine-modulated plasticity promotes the unlearning of old reward locations. Further, differences in neuromodulator concentrations in the model captured mouse-by-mouse performance variability in the optogenetic experiments. Our line of work sheds light on how neuromodulators enable the learning of new contingencies.


Assuntos
Comportamento Animal , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Modelos Neurológicos , Neurotransmissores/fisiologia , Recompensa
4.
Elife ; 102021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821790

RESUMO

The hippocampus plays a central role in long-term memory formation, and different hippocampal network states are thought to have different functions in this process. These network states are controlled by neuromodulatory inputs, including the cholinergic input from the medial septum. Here, we used optogenetic stimulation of septal cholinergic neurons to understand how cholinergic activity affects different stages of spatial memory formation in a reward-based navigation task in mice. We found that optogenetic stimulation of septal cholinergic neurons (1) impaired memory formation when activated at goal location but not during navigation, (2) reduced sharp wave ripple (SWR) incidence at goal location, and (3) reduced SWR incidence and enhanced theta-gamma oscillations during sleep. These results underscore the importance of appropriate timing of cholinergic input in long-term memory formation, which might help explain the limited success of cholinesterase inhibitor drugs in treating memory impairment in Alzheimer's disease.


Assuntos
Neurônios Colinérgicos/fisiologia , Sono , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Navegação Espacial , Animais , Objetivos , Masculino , Camundongos , Optogenética
5.
Eur J Neurosci ; 53(5): 1378-1393, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131134

RESUMO

Cholinergic tone is high during wake and rapid eye movement sleep and lower during slow wave sleep (SWS). Nevertheless, the low tone of acetylcholine during SWS modulates sharp wave ripple incidence in the hippocampus and slow wave activity in the neocortex. Linking the hippocampus and neocortex, the medial entorhinal cortex (mEC) regulates the coupling between these structures during SWS, alternating between silent Down states and active Up states, which outlast neocortical ones. Here, we investigated how low physiological concentrations of acetylcholine (ACh; 100-500 nM) modulate Up and Down states in a mEC slice preparation. We find that ACh has a dual effect on mEC activity: it prolongs apparent Up state duration as recorded in individual cells and decreases the total synaptic charge transfer, without affecting the duration of detectable synaptic activity. The overall outcome of ACh application is excitatory and we show that ACh increases Up state incidence via muscarinic receptor activation. The mean firing rate of principal neurons increased in around half of the cells while the other half showed a decrease in firing rate. Using two-photon calcium imaging of population activity, we found that population-wide network events are more frequent and rhythmic during ACh and confirmed that ACh modulates cell participation in these network events, consistent with a role for cholinergic modulation in regulating information flow between the hippocampus and neocortex during SWS.


Assuntos
Córtex Entorrinal , Neocórtex , Potenciais de Ação , Animais , Colinérgicos , Hipocampo , Camundongos
6.
Cereb Cortex ; 29(7): 2815-2831, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30059985

RESUMO

Sensory processing relies on fast detection of changes in environment, as well as integration of contextual cues over time. The mechanisms by which local circuits of the cerebral cortex simultaneously perform these opposite processes remain obscure. Thalamic "specific" nuclei relay sensory information, whereas "nonspecific" nuclei convey information on the environmental and behavioral contexts. We expressed channelrhodopsin in the ventrobasal specific (sensory) or the rhomboid nonspecific (contextual) thalamic nuclei. By selectively activating each thalamic pathway, we found that nonspecific inputs powerfully activate adapting (slow-responding) interneurons but weakly connect fast-spiking interneurons, whereas specific inputs exhibit opposite interneuron preference. Specific inputs thereby induce rapid feedforward inhibition that limits response duration, whereas, in the same cortical area, nonspecific inputs elicit delayed feedforward inhibition that enables lasting recurrent excitation. Using a mean field model, we confirm that cortical response dynamics depends on the type of interneuron targeted by thalamocortical inputs and show that efficient recruitment of adapting interneurons prolongs the cortical response and allows the summation of sensory and contextual inputs. Hence, target choice between slow- and fast-responding inhibitory neurons endows cortical networks with a simple computational solution to perform both sensory detection and integration.


Assuntos
Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar
7.
Neuropharmacology ; 148: 394-405, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30472273

RESUMO

In addition to reducing seizures, anti-epileptic treatments should preserve physiological network activity. Here, we used a thalamocortical slice preparation displaying physiological slow oscillations to investigate the effects of anticonvulsant drugs on physiological activity and epileptiform activity in two pharmacological epilepsy models. Thus, we compared the effects of GABA pharmacology on spontaneous physiological and pathological events in slices of the mouse barrel cortex. We show that both reducing inhibition using GABAAR blockers and enhancing excitation by lowering Mg2+ concentration allow for the transition from physiological slow oscillations to epileptiform activity. Our results indicate that GABABR antagonists have pro-convulsive properties by increasing event duration in the low inhibition model and event frequency in the high excitation model. Moreover, we show that GABABR agonists and GABA uptake blockers, known for their anticonvulsant properties, act primarily on epileptiform burst frequency and allow for a partial restoration of physiological events. As a proof of principle, these results indicate that a slice model with spontaneous network events may be a useful pipeline to investigate the effects of anti-epileptic drugs on both epileptiform and physiological network activity.


Assuntos
Epilepsia/fisiopatologia , Moduladores GABAérgicos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia , Animais , Anticonvulsivantes/farmacologia , Magnésio/farmacologia , Camundongos , Piridazinas/farmacologia , Córtex Somatossensorial/efeitos dos fármacos
8.
Curr Biol ; 28(16): 2557-2569.e4, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100338

RESUMO

The central cholinergic system and the amygdala are important for motivation and mnemonic processes. Different cholinergic populations innervate the amygdala, but it is unclear how these projections impact amygdala processes. Using optogenetic circuit-mapping strategies in choline acetyltransferase (ChAT)-cre mice, we demonstrate that amygdala-projecting basal forebrain and brainstem ChAT-containing neurons can differentially affect amygdala circuits and behavior. Photo-activating ChAT terminals in vitro revealed the underlying synaptic impact of brainstem inputs to the central lateral division to be excitatory, mediated via the synergistic glutamatergic activation of AMPA and NMDA receptors. In contrast, stimulating basal forebrain inputs to the basal nucleus resulted in endogenous acetylcholine (ACh) release, resulting in biphasic inhibition-excitation responses onto principal neurons. Such response profiles are physiological hallmarks of neural oscillations and could thus form the basis of ACh-mediated rhythmicity in amygdala networks. Consistent with this, in vivo basal forebrain ChAT+ activation strengthened amygdala basal nucleus theta and gamma frequency rhythmicity, both of which continued for seconds after stimulation and were dependent on local muscarinic and nicotinic receptor activation, respectively. Activation of brainstem ChAT-containing neurons, however, resulted in a transient increase in central lateral amygdala activity that was independent of cholinergic receptors. In addition, driving these respective inputs in behaving animals induced opposing appetitive and defensive learning-related behavioral changes. Because learning and memory are supported by both cellular and network-level processes in central cholinergic and amygdala networks, these results provide a route by which distinct cholinergic inputs can convey salient information to the amygdala and promote associative biophysical changes that underlie emotional memories.


Assuntos
Tonsila do Cerebelo/fisiologia , Prosencéfalo Basal/fisiologia , Tronco Encefálico/fisiologia , Neurônios Colinérgicos/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Colina O-Acetiltransferase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Optogenética
9.
Eur J Neurosci ; 48(8): 2795-2806, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29356162

RESUMO

The entorhinal-hippocampal system is an important circuit in the brain, essential for certain cognitive tasks such as memory and navigation. Different gamma oscillations occur in this circuit, with the medial entorhinal cortex (mEC), CA3 and CA1 all generating gamma oscillations with different properties. These three gamma oscillations converge within CA1, where much work has gone into trying to isolate them from each other. Here, we compared the gamma generators in the mEC, CA3 and CA1 using optogenetically induced theta-gamma oscillations. Expressing channelrhodopsin-2 in principal neurons in each of the three regions allowed for the induction of gamma oscillations via sinusoidal blue light stimulation at theta frequency. Recording the oscillations in CA1 in vivo, we found that CA3 stimulation induced slower gamma oscillations than CA1 stimulation, matching in vivo reports of spontaneous CA3 and CA1 gamma oscillations. In brain slices ex vivo, optogenetic stimulation of CA3 induced slower gamma oscillations than stimulation of either mEC or CA1, whose gamma oscillations were of similar frequency. All three gamma oscillations had a current sink-source pair between the perisomatic and dendritic layers of the same region. Taking advantage of this model to analyse gamma frequency mechanisms in slice, we showed using pharmacology that all three gamma oscillations were dependent on the same types of synaptic receptor, being abolished by blockade of either type A γ-aminobutyric acid receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors, and insensitive to blockade of N-methyl-d-aspartate receptors. These results indicate that a fast excitatory-inhibitory feedback loop underlies the generation of gamma oscillations in all three regions.


Assuntos
Córtex Entorrinal/fisiologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Animais , Córtex Entorrinal/química , Feminino , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/química , Vias Neurais/fisiologia , Optogenética/métodos
10.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28497110

RESUMO

Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety.


Assuntos
Neurônios Colinérgicos/fisiologia , Interneurônios/fisiologia , Motivação/fisiologia , Recompensa , Animais , Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Interneurônios/efeitos dos fármacos , Camundongos Transgênicos , Núcleo Accumbens/fisiologia
11.
Cereb Cortex ; 26(6): 2549-2562, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25934969

RESUMO

Nicotinic excitation in neocortex is mediated by low-affinity α7 receptors and by high-affinity α4ß2 receptors. There is evidence that α7 receptors are synaptic, but it is unclear whether high-affinity receptors are activated by volume transmission or synaptic transmission. To address this issue, we characterized responses of excitatory layer 6 (L6) neurons to optogenetic release of acetylcholine (ACh) in cortical slices. L6 responses consisted in a slowly decaying α4ß2 current and were devoid of α7 component. Evidence that these responses were mediated by synapses was 4-fold. 1) Channelrhodopsin-positive cholinergic varicosities made close appositions onto responsive neurons. 2) Inhibition of ACh degradation failed to alter onset kinetics and amplitude of currents. 3) Quasi-saturation of α4ß2 receptors occurred upon ACh release. 4) Response kinetics were unchanged in low release probability conditions. Train stimulations increased amplitude and decay time of responses and these effects appeared to involve recruitment of extrasynaptic receptors. Finally, we found that the α5 subunit, known to be associated with α4ß2 in L6, regulates short-term plasticity at L6 synapses. Our results are consistent with previous anatomical observations of widespread cholinergic synapses and suggest that a significant proportion of these small synapses operate via high-affinity nicotinic receptors.


Assuntos
Acetilcolina/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Acetilcolinesterase/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Optogenética , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos
12.
Brain Struct Funct ; 220(6): 3497-512, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108310

RESUMO

Neocortical layer VI is critically involved in thalamocortical activity changes during the sleep/wake cycle. It receives dense projections from thalamic nuclei sensitive to the wake-promoting neuropeptides orexins, and its deepest part, layer VIb, is the only cortical lamina reactive to orexins. This convergence of wake-promoting inputs prompted us to investigate how layer VIb can modulate cortical arousal, using patch-clamp recordings and optogenetics in rat brain slices. We found that the majority of layer VIb neurons were excited by nicotinic agonists and orexin through the activation of nicotinic receptors containing α4-α5-ß2 subunits and OX2 receptor, respectively. Specific effects of orexin on layer VIb neurons were potentiated by low nicotine concentrations and we used this paradigm to explore their intracortical projections. Co-application of nicotine and orexin increased the frequency of excitatory post-synaptic currents in the ipsilateral cortex, with maximal effect in infragranular layers and minimal effect in layer IV, as well as in the contralateral cortex. The ability of layer VIb to relay thalamocortical inputs was tested using photostimulation of channelrhodopsin-expressing fibers from the orexin-sensitive rhomboid nucleus in the parietal cortex. Photostimulation induced robust excitatory currents in layer VIa neurons that were not pre-synaptically modulated by orexin, but exhibited a delayed, orexin-dependent, component. Activation of layer VIb by orexin enhanced the reliability and spike-timing precision of layer VIa responses to rhomboid inputs. These results indicate that layer VIb acts as an orexin-gated excitatory feedforward loop that potentiates thalamocortical arousal.


Assuntos
Córtex Cerebral/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Neurônios/fisiologia , Orexinas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Iodeto de Dimetilfenilpiperazina/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Optogenética , Orexinas/administração & dosagem , Ratos , Ratos Wistar , Potenciais Sinápticos/efeitos dos fármacos
14.
Brain Struct Funct ; 220(5): 2797-815, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001082

RESUMO

Recent reports point to critical roles of glutamate receptor subunit delta2 (GluD2) at excitatory synapses and link GluD1 gene alteration to schizophrenia but the expression patterns of these subunits in the brain remain almost uncharacterized. We examined the distribution of GluD1-2 mRNAs and proteins in the adult rodent brain, focusing mainly on GluD1. In situ hybridization revealed widespread neuronal expression of the GluD1 mRNA, with higher levels occurring in several forebrain regions and lower levels in cerebellum. Quantitative RT-PCR assessed differential GluD1 expression in cortex and cerebellum, and revealed GluD2 expression in cortex, albeit at markedly lower level than in cerebellum. Likewise, a high GluD1/GluD2 mRNA ratio was observed in cortex and a low ratio in cerebellum. GluD1 and GluD2 mRNAs were co-expressed in single cortical and hippocampal neurons, with a large predominance of GluD1. Western blots using GluD1- and GluD2-specific antibodies showed expression of both subunits in various brain structures, but not in non-nervous tissues examined. Both delta subunits were upregulated during postnatal development. Widespread neuronal expression of the GluD1 protein was confirmed using immunohistochemistry. Examination at the electron microscopic level in the hippocampus revealed that GluD1 was mainly localized at postsynaptic density of excitatory synapses on pyramidal cells. Control experiments performed using mice carrying deletion of the GluD1- or the GluD2-encoding gene confirmed the specificity of the present mRNA and protein analyses. Our results support a role for the delta family of glutamate receptors at excitatory synapses in neuronal networks throughout the adult brain.


Assuntos
Envelhecimento/fisiologia , Cerebelo/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Expressão Gênica/fisiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...